OCT; Comparative Imaging Results with IVUS, VH and Angioscopy

Takashi Akasaka, M.D. Department of Cardiovascular Medicine Wakayama Medical University Wakayama, Japan _{Wakayama} Medical University

Comparison among coronary imaging techniques

	OCT	IVUS	MRI	CAG	Angioscopy
				KA	Normal Pigmented
Resolution	10 - 15	80 – 120	80 – 300	100-200	<200
Probe Size	140	700	1000	N/A	800
Contact	No	Yes	No	No	No
lonizing Radiation	No	No	No	Yes	No
Other	Tissue Character ization	N/A	N/A	Flow Only	Surface Only

Advantages of OCT are its high resolution and accuracy of tissue characterization.

Intracoronary Imaging Comparison among OCT, IVUS, VH & Angioscopy

• Tissue characterization: comparison with histology

• Vulnerable plaque identification

• Stent follow-up

Fibrous plaque

1mm

Signal rich Diffuse border

Fibrous plaque

Fibrocalcific plaque

Calcified plaque

Superficial calcified nodule

Fibro-lipidic plaque

Signal poor Diffuse border

Fibrofatty plaque

Red & white thrombus

Red thrombus

White thrombus

Mixed thrombus

Protrusion mass with shadow

Protrusion mass without shadow

Protrusion mass with & without shadow

Kume T, Akasaka T, et al (Am J Cardiol 97:1713-1717, 2006) Kubo T, Akasaka T, et al. (J Am Coll Cardiol 50:933-939,2007)

Thrombus

OCT

IVUS

Accuracy of intra-coronary OCT for differentiation between red and white thrombus

		Angioscopy		
		Red thrombus	White thrombus	
OCT -	Intensity half distance <250µm	18	3	
	Intensity half distance ≧250µm	1	21	

Sensitivity = 95% Specificity = 88% Positive predictive value = 86% Negative predictive value =95%

Intracoronary Imaging Comparison among OCT, IVUS & Angioscopy

• Tissue characterization: comparison with histology

• Vulnerable plaque identification

• Stent follow-up

Study Design

Oral aspirin (162 mg) and intravenous heparin (100 U/kg) were administered before PCI.

ma Medical IIn

Cardiac catheterization was performed by the femoral approach, using a 7F sheath and catheters.

Thrombectomy (Export catheter ® Medtronic Japan)

TIMI grade III

- IVUS (Atlantis SR Pro® 2.5F, 40-MHz; Boston Scientific, Natick, MA, USA)
- CAS (Angioscope MC-800E and the optic fiber AS-003, Nihon Kohden)
- OCT (ImageWire®; LightLab Imaging, Westford, MA, USA)

Inferior AMI (71y.o. Male)

Wakayama Medical University

0

1 mm

Inferior-AMI (71y.o., M) Plaque Rupture

- Ruptured Fibrous Cap
- Fibrous Cap Thickness
 = 40µm
- TL : True Lumen UL : Ulceration

Anteroseptal AMI (80y.o., M)

Comparison of plaque Images in AMI (OCT vs. CAS vs. IVUS) n=30

(Kubo T, Akasaka T, et al. J Am Coll Cardiol in press)

	OCT	*CAS	**IVUS	*p	**p
Plaque Rupture (%)	73	47	40	0.035	0.009
Ulceration (erosion) (%)	23	3	0	0.022	0.005
Thrombus (%)	100	100	33	1.000	<0.001
Red thrombus (%)	100	90	-	0.076	-
White thrombus (%)	100	93	-	0.150	-
TCFA(≦65µm) (%)	83	-	-	-	-
Fibrous cap thickness (µm)	49±21	-	-	-	-
LRP (Lipid Arch>180°) (%)	83	-	67	-	NS

TCFA; Thin Cap Fibro-Atheroma, LRP; Lipid Rich Plaque

Thin-cap fibroatheroma (TCFA)

Possibility to identify TCFA has been demonstrated by several pilot studies.

Corresponding Images of OCT and Angioscopy

(Kubo T, et al. J Am Coll Cardiol Intv 1:74-80,2008)

Wakayama Medical Figure arsit

Angioscopy vs OCT

Plaque color vs lipid size

Plaque color vs fibrous cap thickness

(Kubo T, et al. J Am Coll Cardiol Intv 1:74-80,2008)

IVUS-derived TCFA

(Rodriguez-Granillo GA, et al. J Am Coll Cardiol 46:2038-2042, 2005)

Percent atheroma volume = (EEM area – Lumen area)/EEM area x100≧40%

Nectrotic core≧10%

Without evident overlying fibrous tissue

VH-IVUS vs OCT

-igure 2 Concordant

Discordant

Without evident overlying fibrous tissue

Without evident overlying fibrous tissue

With evident overlying fibrous tissue

Concordance & discordance between VH-IVUS and OCTTable 4in the assessment of TCFA

OCT Diagnosis Diagnosis	TCFA (n=11)	Not TCFA (n=36)
VH-TCFA (n=31)	9	22
Not VH-TCFA (n=16)	2	14

Discordance between VH-IVUS & OCT has been described by Sawada T, et al. (Eur Heart J 29:1136-1146, 2008)

Changes of plaque characteristics by statin

(Takarada S, et al. Atherosclerosis 202: 491-497, 2009)

	Baseline	Follow-up	р
Statin group			
Fibrous cap thickness (µm)	114±83	162 ± 75	<0.01
Lipid arc (degrees)	132±37	116±23	<0.01
Non-statin group			
Fibrous cap thickness (µm)	117±78	129±54	ns
Lipid arc (degrees)	129±37	128±28	ns

The correlation between the lipid profile and the % change of fibrous-cap thickness (FCT) and total atheroma volume (TAV).

Changes of plaque, media & lumen area

Kubo T, et al. J Am Coll Cardiol 55;1590-1597, 2010) Wakayama

Medical Universit

Coronary lesion morphology by VH-IVUS

(Kubo T, et al. J Am Coll Cardiol 55;1590-1597, 2010)

Intracoronary Imaging Comparison among OCT, IVUS & Angioscopy

• Tissue characterization: comparison with histology

• Vulnerable plaque identification

• Stent follow-up

ACS; 69 y.o. M #6 Cypher 3.5 x 18 mm

Post PCI

Stent malapposition

Incomplete stent apposition

Tissue protrusion

Stent edge dissection

Vascular response after stent implantation between unstable and stable AP

24 unstable and 31 stable AP patients were examined by OCT to evaluate lesion morphologies after stent implantation.

Conclusion: The inadequate lesion morphologies after stenting were observed more frequently in unstable AP patients.

Kubo T, et al, JACC Img. 2008 1:475–484

OCT and IVUS images of stented lesions

Kubo T, et al, JACC Img. 2008 1:475–484

Comparison of the ability for monitoring stent deployment between OCT and IVUS

55 patients were examined by OCT and IVUS to evaluate lesion morphologies after stent implantation.

Conclusion: OCT can provide more detailed morphological information after stenting than IVUS.

Kubo T, et al, JACC Img. 2008 1:475–484

Classification of strut condition

Wellapposed with neointima

Wellapposed without neointima

Malapposed with neointima

Malapposed without neointima

Side branch orfice with neointimal coverage

Side branch orfice without neointimal coverage

Post-stent follow up

Distribution of the neointima thickness on SES strut (6 months f/u)

Neointima thickness is under IVUS resolution in more than 70% pts.

An SES (Cypher, 3.5x23 mm) implanted proximally in the LAD

First follow-up (3 months)

Second follow-up (10 months)

Third follow-up (23 months)

Stent struts bulged into the lumen and, although covered, were transparently visible

Awata, M. et al. Circulation 2007;116:910-916

Changes in neointimal coverage grades from the first to the third follow-up in 28 stents

Stent struts condition

Fully embedded and not visible

Embedded by the neointima, but still visible translucently

Bulged into the lumen, although covered, transparently visible

Fully visible similar to soon after implantation

Awata, M. et al. Circulation 2007;116:910-916

Asymptomiatic instent thombus by CAS

SES: 33% BMS: 8%

SES: 19% PES: 43%

ano et al. Eur Heart J 2006; 27: 2189-2195

Awata et al. J Am Coll Cardiol Intv 2009; 2: 453-458

Instent thrombus

DES

BMS

Distal to DES

Conclusions

- OCT can identify lipid-rich plaques & differentiate the plaque types more sensitively compared with IVUS.
- OCT can demonstrate rupture or ulceration of fibrous cap with higher detection rate than that of IVUS or CAS.
- OCT could detect intracoronary thrombus almost exclusively which was confirmed by CAS.
- OCT may demonstrate the results of PCIs precisely, including mal-appositions, tissue (or thrombus) protrusion, and edge dissection immediately after the procedure and thin neo-intima formation and small thrombus within stents late after DES.

Representative case of plaque stabilization : 66yo, male

primary PCI

Total atheroma volume=63mm

9-months follow-up

Total atheroma volume=61mm

3

Fibrous-cap thickness=90µm

1.0

0.5

0.0 17:11:07 (10/09/2

0.4

1.5

17:

Fibrous-cap thickness=310µm

(Takarada S, et al. JACC Interv. 2010, in press)

3